GABAergic control of substantia nigra dopaminergic neurons.

نویسندگان

  • James M Tepper
  • Christian R Lee
چکیده

At least 70% of the afferents to substantia nigra dopaminergic neurons are GABAergic. The vast majority of these arise from the neostriatum, the external globus pallidus and the substantia nigra pars reticulata. Nigral dopaminergic neurons express both GABA(A) and GABA(B) receptors, and are inhibited by local application of GABA(A) or GABA(B) agonists in vivo and in vitro. However, in vivo, synaptic responses elicited by stimulation of neostriatal or pallidal afferents, or antidromic activation of nigral pars reticulata GABAergic projection neurons are mediated predominantly or exclusively by GABA(A) receptors. The clearest and most consistent role for the nigral GABA(B) receptor in vivo is as an inhibitory autoreceptor that presynaptically modulates GABA(A) synaptic responses that originate from all three principal GABAergic inputs. The firing pattern of dopaminergic neurons is also effectively modulated by GABAergic inputs in vivo. Local blockade of nigral GABA(A) receptors causes dopaminergic neurons to shift to a burst firing pattern regardless of the original firing pattern. This is accompanied by a modest increase in spontaneous firing rate. The GABAergic inputs from the axon collaterals of the pars reticulata projection neurons seem to be a particularly important source of a GABA(A) tone to the dopaminergic neurons, inhibition of which leads to burst firing. The globus pallidus exerts powerful control over the pars reticulata input, and through the latter, disynaptically over the dopaminergic neurons. Inhibition of pallidal output leads to a slight decrease in firing of the dopaminergic neurons due to disinhibition of the pars reticulata neurons whereas increased firing of pallidal neurons leads to burst firing in dopaminergic neurons that is associated with a modest increase in spontaneous firing rate and a significant increase in extracellular levels of dopamine in the neostriatum. The pallidal disynaptic disinhibitory control of the dopaminergic neurons dominates the monosynaptic inhibitory influence because of a differential sensitivity to GABA of the two nigral neuron types. Nigral GABAergic neurons are more sensitive to GABA(A)-mediated inhibition than dopaminergic neurons, in part due to a more hyperpolarized GABA(A) reversal potential. The more depolarized GABA(A) reversal potential in the dopaminergic neurons is due to the absence of KCC2, the chloride transporter responsible for setting up a hyperpolarizing Cl(-) gradient in most mature CNS neurons. The data reviewed in this chapter have made it increasingly clear that in addition to the effects that nigral GABAergic output neurons have on their target nuclei outside of the basal ganglia, local interactions between GABAergic projection neurons and dopaminergic neurons are crucially important to the functioning of the nigral dopaminergic neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GABA, Receptor-Mediated Inhibition of Rat Substantia Nigra Dopaminergic Neurons by Pars Reticulata Projection Neurons

Evidence from electrophysiological studies has suggested an inhibitory interaction between GABAergic neurons in substantia nigra pars reticulata and dopaminergic neurons in pars compacta. However, that this inhibitory interaction is due to a projection from pars reticulata to pars compacta has never been demonstrated directly, nor has the GABAergic neuron that mediates the interaction been iden...

متن کامل

GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons.

Evidence from electrophysiological studies has suggested an inhibitory interaction between GABAergic neurons in substantia nigra pars reticulata and dopaminergic neurons in pars compacta. However, that this inhibitory interaction is due to a projection from pars reticulata to pars compacta has never been demonstrated directly, nor has the GABAergic neuron that mediates the interaction been iden...

متن کامل

Possible roles of kainate receptors on GABAergic nerve terminals projecting to rat substantia nigra dopaminergic neurons.

GABAergic afferent inputs are thought to play an important role in the control of the firing pattern of substantia nigra pars compacta (SNc) dopaminergic neurons. We report here the actions of presynaptic kainite (KA) receptors in GABAergic transmission of rat SNc dopaminergic neurons. In mechanically dissociated rat SNc dopaminergic neurons attached with native presynaptic nerve terminals, GAB...

متن کامل

Basal ganglia control of substantia nigra dopaminergic neurons.

Although substantia nigra dopaminergic neurons are spontaneously active both in vivo and in vitro, this activity does not depend on afferent input as these neurons express an endogenous calcium-dependent oscillatory mechanism sufficient to drive action potential generation. However, afferents to these neurons, a large proportion of them GABAergic and arising from other nuclei in the basal gangl...

متن کامل

Bidirectional Modulation of Substantia Nigra Activity by Motivational State

A major output nucleus of the basal ganglia is the substantia nigra pars reticulata, which sends GABAergic projections to brainstem and thalamic nuclei. The GABAergic (GABA) neurons are reciprocally connected with nearby dopaminergic neurons, which project mainly to the basal ganglia, a set of subcortical nuclei critical for goal-directed behaviors. Here we examined the impact of motivational s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Progress in brain research

دوره 160  شماره 

صفحات  -

تاریخ انتشار 2007